ZDDP DEGRADATION AND TRIBOCHEMISTRY REVEALED BY MASS SPECTROMETRY

C. Gabler*, J. Brenner*, M. Frauscher*, A. Grafl*, N. Dörr*

C. Gabler*, J. Brenner*, M. Frauscher*, A. Grafl*, N. Dörr*

AC2T research GmbH,
Viktor-Kaplan-Str. 2C, 2700 Wiener Neustadt, Austria
Vienna University of Technology, Institute of Chemical Technologies and Analytics
Getreidemarkt 9/164 1060 Wien, Austria

KEYWORDS
Boundary lubrication; zinc dialkyldithiophosphate (ZDDP); oxidation; mass spectrometry (MS); X-ray photoelectron spectroscopy (XPS)

ABSTRACT
Tribochemistry of ZDDP antiwear additives is reported by numerous publications, e.g., comprehensively summarised in a review by Spikes [1]. For tribofilm characterisation, secondary ion mass spectrometry (SIMS) is known for harsh ionization, hence connected with significant loss of molecular info. For the identification of ZDDP degradation products in lubricants, chromatography and nuclear magnetic resonance (NMR) spectroscopy, particularly 31P-NMR, are known [2].

To overcome the limitations to satisfactorily describe mechanisms of ZDDP degradation and tribochemistry on the molecular level, an analytical approach based on MS is proposed. Joining findings from oil degradation and ZDDP tribochemistry [3-4], used oils generated by oxidative and/or tribological stress were characterised for degradation products using highly accurate MS and compared with fresh oil for a proper description of the used oil condition. Mass spectra disclosed the formation of alkyl phosphates in used oils originating from ZDDP (Fig. 1). It could be also shown that the fresh oil can contain ZDDP derivatives, being either by-products or oxidation products.

The findings from oil chemistry were connected with tribological performance assessed in an oscillating steel-steel contact. Mapping of the wear scars with MS and XPS revealed specific distribution patterns of organic and inorganic moieties on the surface that account for the local tribological conditions along the disc wear scar.

ACKNOWLEDGMENTS
This work was funded by the Austrian COMET-Program (Project XTRIBOLOGY, no. 849109) and the work was carried out at the “Excellence Centre of Tribology” (AC2T research GmbH).

REFERENCES